2.07 Systemic Sclerosis – Role of the pulmonary microenvironment to drive SSc to SSc-ILD transition

Rosa Rodriguez Viera^{1,2}, Julia Malitska^{1,3}, Susan Sultani^{1,4}, Alex Ainebyona^{1,5}, Nazia Chaudhuri⁶, Koray N Potel^{7,8}, Bettina C Schock⁷

¹iENGAGE programme 2024, Welcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom. ²Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain. ³Taras Shevchenko National University of Kyiv, Kyiv, Ukraine. ⁴Al-Farabi Kazakh National University, Almaty, Kazakhstan. ⁵University of Global Health Equity, Kigali Heights, Rwanda. ⁶Ulster University, Derry/Londonderry, United Kingdom. ⁷Welcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom. ⁸Department of Surgery, University of Minnesota, Minnesota, USA

Background: A common complication in Systemic Sclerosis (SSc) is the development of interstitial lung disease (SSc-ILD). However, the *progression from SSc to SSc-ILD is not well understood*. We aimed to systematically review and identify soluble mediators in bronchoalveolar lavage fluid that differentiate patients with SSc-ILD, SSc without ILD (SSc) or healthy controls (HC) through a systematic review. **Methods**: Two databases (Web of Sci, PubMed, 2000-24) were screened. The study protocol was registered with Prospero (CRD42024556636). Data were meta-analysed using Cochrane's RevMan. STRING and G:Profiler tools were used for network/functional analyses.

Results: Screening identified 20 publications for inclusion; 12 were qualitatively synthesized and four meta-analysed. Meta analysis showed IL-8 was higher in SSc-ILD vs HC (SMD 1.29, p < 0.001, I² = 38%). Data for SSc-ILD and SSc were found for seven mediators, six of which (*HE4*, *BTG*, *PF4*, *ECP*, *MPO and MMP-9*) were significantly increased in SSc-ILD compared to SSc. Enrichment analyses linked these mediators to immune/stress responses, IL-1/IL-26 signalling and lung fibrosis. Conclusions: The identified panel of pro-inflammatory and pro-fibrotic mediators, significantly different between SSc and SSc-ILD, emphasizes the importance of the pulmonary microenvironment in the development of SSc-ILD and could be further diagnostically and therapeutically explored. **Disclosures:Conflicts of interest:** Authors declare no conflicts of interest.